Ricci Flat Metrics with bidimensional null Orbits and non-integrable orthogonal Distribution by

نویسنده

  • Michael Bächtold
چکیده

We study Ricci flat 4-metrics of any signature under the assumption that they allow a Lie algebra of Killing fields with 2-dimensional orbits along which the metric degenerates and whose orthogonal distribution is not integrable. It turns out that locally there is a unique (up to a sign) metric which satisfies the conditions. This metric is of signature (++−−) and, moreover, homogeneous possessing a 6-dimensional symmetry algebra. The Diffiety Institute Preprint Series Preprint DIPS–3/2005 December 7, 2005 Available via INTERNET: http://diffiety.ac.ru; http://diffiety.org The Diffiety Institute Ricci Flat Metrics with bidimensional null Orbits and non-integrable orthogonal Distribution

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gravitational fields with a non Abelian bidimensional Lie algebra of symmetries

Vacuum gravitational fields invariant for a bidimensional non Abelian Lie algebra of Killing fields, are explicitly described. They are parameterized either by solutions of a transcendental equation (the tortoise equation) or by solutions of a linear second order differential equation on the plane. Gravitational fields determined via the tortoise equation, are invariant for a 3-dimensional Lie ...

متن کامل

Warped product and quasi-Einstein metrics

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

متن کامل

Ricci-flat Deformations of Asymptotically Cylindrical Calabi–yau Manifolds

We study a class of asymptotically cylindrical Ricci-flat Kähler metrics arising on quasiprojective manifolds. Using the Calabi–Yau geometry and analysis and the Kodaira–Kuranishi–Spencer theory and building up on results of N.Koiso, we show that under rather general hypotheses any local asymptotically cylindrical Ricci-flat deformations of such metrics are again Kähler, possibly with respect t...

متن کامل

On a class of locally projectively flat Finsler metrics

‎In this paper we study Finsler metrics with orthogonal invariance‎. ‎We‎ ‎find a partial differential equation equivalent to these metrics being locally projectively flat‎. ‎Some applications are given‎. ‎In particular‎, ‎we give an explicit construction of a new locally projectively flat Finsler metric of vanishing flag curvature which differs from the Finsler metric given by Berwald in 1929.

متن کامل

On 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type

‎In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five‎. ‎Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces‎. ‎Moreover‎, ‎we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010